Reactions with and in anhydrous hydrogen fluoride. Part 6. Reactions of peracetylated long-chain 3-O-(n-alkyl)- and 4,6-O-(n-alkylidene)-D-glucosyl fluorides in anhydrous hydrogen fluoride systems

R. Miethchen*, D. Peters

University of Rostock, Department of Chemistry, Buchbinderstrasse 9, D-2500 Rostock (Germany)

and C. Pedersen

The Technical University of Denmark, Institute of Organic Chemistry, DK-2800 Lyngby (Denmark)

(Received June 3, 1991; accepted August 29, 1991)

Abstract

The 2,4,6-tri-O-acetyl-3-O-alkyl-D-glucopyranosyl fluorides (1-5) undergo rearrangement in anhydrous hydrogen fluoride to give the 1,2:5,6-diacetoxonium ions (11-15). On further reaction, the latter (except the methyl derivative 5) are dealkylated and further rearrange to give the 2,3:5,6-diacetoxonium ion of the D-mannofuranosyl fluoride 19. The 2,3-di-O-acetyl-4,6-O-alkylidene-D-glucopyranosyl fluorides (22 and 23) were prepared from the corresponding 1-O-acetates by treatment with hydrogen fluoride in nitromethane.

Introduction

Peracetylated 3-O-(n-alkyl)-D-glucopyranoses, or -pyranosyl fluorides [1, 2], having $C_{12}-C_{16}$ alkyl groups, form micelles in anhydrous hydrogen fluoride [3, 4]. When measuring the critical micelle concentration (c.m.c.) it is important to know whether the micelle-forming compounds are stable during the measurements (~6 h at 0 °C). We have therefore studied the behaviour of the 3-O-alkyl-2,4,6-tri-O-acetyl-D-glucopyranosyl fluorides (1-4) (Scheme 1) in anhydrous hydrogen fluoride (HF) solution at concentrations both below and above the c.m.c. values. The reactions of compounds 1-4, and of the corresponding 3-O-methyl derivative (5), were studied by NMR spectroscopy. Compounds 1-5 all form 3-O-alkyl-1,2:5,6-diacetoxonium ions (11-15) in HF solution. Whereas the 3-O-methyl ion (15) is stable, the ions 11-14, having higher alkyl chains, subsequently lose the alkyl groups and undergo further rearrangement.

The reactivity of 4,6-O-alkylidene-D-glucopyranose derivatives in HF-nitromethane mixtures was also studied. For the synthesis of the anomeric

^{*}Author to whom correspondence should be addressed.

	Compounds						
	1–4 ^b	5	11–14 ^b	15	16	19	
H-1	5.45dd	5.43dd	6.99d	6.97d	7.00d	5.91d	
$J_{1,2}$	2.5	2.5	4.8	4.8	4.8	~0	
$J_{1,\mathrm{F}}$	52.3	52.5				53.5	
H-2	4.72ddd	4.71ddd	5.53d	5.58d	5.49d	5.96dd	
$J_{2.3}$	10.0	10.0	~0	~ 0			
$J_{2,\mathrm{F}}$	24.3	24.5					
н-3	3.76m	3.76m	4.27d	4.20d	4.67d	6.14dd	
$J_{3,4}$	10.0	10.0	4.6	4.2			
H-4	5.04dd	5.05dd	4.95d	4.88d	4.87d	5.75 dd	
$J_{4,5}$	10.0	10.0	~0	~0		$J_{4,F} = 6.0$	
H-5	3.94m	3.94m	5.65dd	5.66dd	5.70dd		
$J_{5.6}$	4.4	4.5	9.2	9.0			
$J_{5,6'}$	2.5	2.5	9.2	9.0			
H-6	4.12dd	4.10dd	5.00m	4.96m	5.02m		
$J_{6,6'}$	12.5	12.0					
H-6′	4.31dd	4.29dd	5.00m	4.96m	5.02m		

¹H NMR spectra (250 MHz) of the compounds 1-5, 11-16 and 19 in HF-DF*

 δ values in ppm; J values in Hz.

3.56m

1.26m

0.94m

0.50t

1.92s

^bDifferences between compounds of this group: $\delta = \pm 0.01$ ppm; $J = \pm 0.5$ Hz. ^cAll other CH₂ groups.

3.42s

1.92s

glycosyl fluorides, a similar influence of the temperature, time and reagent composition was found as described for the use of HF-pyridine mixtures [5, 6].

3.38m/3.21m

3.16s

2.46s

2.40s

2.45s 2.40s

1.26m

0.93m

0.52t

2.44s

2.40s

Experimental

 α -CH₂/ α '-CH₂

 β -CH₂

 $(CH_2)_n^c$

 $H_3C - C^+$

 CH_3 $H_3C-C=O$

NMR spectra for HF–DF solutions were obtained on a Bruker AC-250 MHz instrument. The solutions were prepared at -70 °C and transferred to a polyethylene tube which was evacuated and sealed. This tube fitted inside a 5 mm glass NMR tube. The spectra were measured at -10 °C. The acetyl groups were used as the internal reference; for ¹H spectra the methyl group was placed at 2.0 ppm and at 20 ppm for ¹³C spectra. The following concentrations of compounds were used: 1 (18,59 and 213 mM); 2 (29, 43,

TABLE 1

	Compounds						
	1-4	5	11–14 ^b	15	16	19	
C-1	104.5d	104.5d	119.4	119.5	119.2	111.1d	
$J_{ ext{C-1,F}}\ J_{ ext{C-2,F}}$	230.6	226.4				$\begin{array}{r} 234.0\\ 47.5\end{array}$	
C-2	74.9d	74.5d	91.2	90.8	94.5	95.1d	
C-3	78.7	80.0	80.2	81.6	73.3	92.9	
C-4	69.2	68.7	83.5	83.5	83.4	80.4	
C-5	70.1	69.9	88.2	88.2	88.2	84.4	
C-6	62.9	62.7	76.9	77.1	76.9	78.1	
α -CH ₂	71.2		73.9				
$(CH_2)_m^c$	20.2-33.8	20.2-33.6					
CH ₃	14.5	61.0	14.1	59.4			
$CH_3C=O$	181.7	181.8					
	181.3	181.5					
	181.0	181.0					
CH_3C^+			15.5	15.8	15.4	15.4	
-			14.8	15.0	14.7	14.8	
CH_3C^+			195.5	195.2	195.4	195.3	
-			194.4	194.2	194.4	194.4	

TABLE 2¹³C NMR spectra (62.9 MHz) of the compounds 1-5, 11-16 and 19 in HF-DF⁴

 δ values in ppm; J values in Hz.

^bDifferences between compounds of this group: $\delta = \pm 0.1$ ppm; $J = \pm 0.2$ Hz. ^cAll other CH₂ groups.

58, 78, 83, 144 and 200 mM); **3** (68, 87, 228 and 240 mM); **4** (249 mM); and **5** (330 mM).

2,4,6-Tri-O-acetyl-3-O-alkyl-D-glucopyranosyl fluorides (1-5) were prepared as described in [1, 3]. 2,3-Di-O-acetyl-4,6-O-(alkylidene)-D-glucopyranosyl fluorides (22a, 22b, 23a and 23b) were prepared using method B described in ref. 2 and under the reaction conditions specified in Table 3. The products were rather unstable syrups which decomposed after a few days at room temperature.

Results and discussion

The 3-O-alkyl-D-glucose derivatives (1-5) were dissolved in HF which contained ~30% deuterium fluoride in order to obtain field-frequency stabilisation of the NMR instrument. The solutions were prepared at -70 °C and were allowed to reach 0 °C over the course of 24 h. The ¹H and ¹³C NMR spectra measured at this stage showed that the HF–DF solutions mainly contained the glucopyranosyl fluorides 1-5 in equilibrium with the 1,2acetoxonium ions **6–10** [7, 8]. A similar, temperature-dependent equilibrium has been observed for tetra-O-acetyl- α -D-glucopyranosyl fluoride [9]. From

Scheme 1. Reactions of acetylated 3-O-alkyl-D-glucopyranosyl fluorides 1–5 in hydrogen fluoride.

these results it must be concluded that the previously measured [3] c.m.c. data for 1-3, obtained over 6 h at 0 °C, actually represent data for a mixture of 1-3 and 6-8.

When solutions of 1–5 in HF–DF were kept successively for 20 h at -25 °C, 20 h at 5 °C and 5 h at 20 °C, the fluorides 1–5 and the 1,2-acetoxonium ions 6–10 were completely converted into the diacetoxonium ions 11–15 as seen from the ¹H and ¹³C NMR spectra (Tables 1 and 2). The proton spectra were assigned through decoupling experiments.

Scheme 2. Preparation of 4,6-O-(n-alkylidene)-2,3-di-O-acetyl-D-glucopyranosyl fluorides.

TABLE 3

Compounds ^a	HF: CH ₃ NO ₂ (ml/ml)	Time (min)	Temp. (°C)	Yield (%)	22a: 22b (NMR)	23a: 23b (NMR)
20	2.10	5	20	71	100.0	
20	2:10	7	-20	70	100:0	
	2:10	12	-20	79	100:0	_
	2:10	20	-20	57	85:15	_
	2:10	30	-20	63	85:15	_
	2:10	60	-20	61	85:15	_
	2:10	7	-10	51	80:20	_
	4:10	5	0	55	75:25	-
	4:10	7	0	44	20:80	_
	4:10	10	0	49	0:100	_
21	4:10	7	0	58	-	20:80

Influence of reaction conditions on the conversion of 20 and 21 to 22a/22b and 23a/23b, respectively, in HF-nitromethane

*1 g per 12 ml reagent solution.

The diacetoxonium ions 11-14 would probably have higher c.m.c. values than those found for 1-4, and the determination of these values would require rather long measuring times. It was therefore of interest to study the stability of the ions 11-15 in HF solution. When 1-4 were kept in HF solution for 3 d at 20 °C, the diacetoxonium ions 11-14 were still present. However, a second diacetoxonium ion was formed as well, and from the NMR spectra (Tables 1 and 2) it appeared to be the 1,2:5,6-diacetoxonium ion 16. After 10 d at 20 °C, 16 was the dominating species present. However, on further standing (3 weeks), a new set of signals appeared in the spectra which showed that this final product 19 was identical with the previously described 2,3:5,6-diacetoxonium ion 15 obtained from 5 was completely stable in HF solution for *ca.* 3 weeks.

Scheme 1 depicts the probable course of the reactions described above, based on similar reactions described previously [10]. The conversion of 11-14 into 16 must take place by protonation of the ether oxygen and

	Compound						
	22a	22b	23a	23b			
H-1	5.38dd	5.70dd	5.37dd	5.69dd			
$J_{1,2}$	6.0	2.8	5.7	2.9			
$J_{1,\mathrm{F}}$	52.5	52.5	52.5	52.5			
H-2	5.05ddd	4.91ddd	5.05ddd	4.91ddd			
$J_{2.3}$	6.0	10.0	6.0	10.0			
$J_{2,\mathrm{F}}^{-,-}$	10.5	24.8	10.5	24.8			
H-3	5.16dd	5.48dd	5.16dd	5.49dd			
$J_{3,4}$	7.9	9.8	7.9	9.8			
H-4	3.66m	3.89m	3.66m	3.90m			
H-5, H-6	3.57m	3.51m	3.57m	3.52m			
$J_{6,6'}$		10.5		10.5			
H-6'	4.24dd	4.18dd	4.24dd	4.19dd			
H-7 [▶]	4.55t	4.53t	4.53t	4.52t			
α -CH ₂	1.57m	1.58m	1.59m	1.59m			
$(CH_2)_n^c$	1.43m (2H)	1.38m (2H)	1.26m (18H)	1.26m (18H)			
CH ₃	0.95t	0.86t	0.88t	0.88t			
CH ₃ CO	2.11s	2.10s	2.11s	2.11s			
	2.10s	2.07s	2.06s	2.06s			

¹H NMR spectra (200 MHz) of the 4,6-O-(n-alkylidene)-D-glucopyranosyl fluorides 22a/22b, 23a/23b in CDCl₃ with TMS as the external standard^a

^a δ values in ppm; J values in Hz.

^bAcetal proton.

^cAll other CH₂ groups.

subsequent cleavage of the oxygen-alkyl bond to give a primary carbenium ion, which undergoes polymerisation. The further conversion of 16 must involve acetylation to give 17 and the rearrangement to 18 [10]. Qualitatively, the ether cleavage seemed to be slower in HF solutions having concentrations above the c.m.c. values than in those with submicellar concentrations.

Preparation of 4,6-O-(n-alkylidene)-2,3-di-O-acetyl-D-glucopyranosyl fluorides by treatment of the corresponding 1-O-acetates with HF is not possible, even at -20 °C, without cleavage of the alkylidene groups [11]. It was, however, possible to isolate the fluorides **22** and **23** after treatment of **20** and **21**, respectively, with HF in nitromethane [2] (Scheme 2). Table 3 lists the results from a series of experiments in which the reaction conditions were varied. Treatment of the 1-acetate **20** with HF-nitromethane (1:5) for a few minutes at -20 °C gave the kinetically favoured β -fluoride **22a** exclusively. A small amount of unreacted **20** could easily be separated by chromatography. On longer reaction times, **20** reacts completely, but, at the same time, partial anomerisation to the α -fluoride **22b** takes place. At 0 °C, using a higher proportion of HF, the α -fluoride is formed exclusively but in

TABLE 4

TABLE 5

	Compounds					
	22a	22b	23a	23b		
C-1	106.3d	104.1d	106.4d	104.1d		
$J_{ m C-1,F}$	218.5	229.4	218.6	230.0		
C-2	71.9d	70.5d	72.1d	70.5d		
$J_{ ext{C-2,F}}$	29.4	24.6	29.4	24.8		
C-3	71.4	68.2	71.5	68.9		
C-4	76.8	77.3	76.9	77.7		
C-5	65.8d	64.4d	65.9d	64.7d		
$J_{ ext{C-5,F}}$	7.1	3.5	6.7	3.8		
C-6	67.9	67.4	68.0	67.8		
C-7 ^b	102.1	102.3	102.9	102.9		
α -CH ₂	35.8	35.5	33.9	33.9		
(CH ₂), ^c	17.1	17.0	22.6-31.8	22.6-31.8		
CH ₃	13.6	13.4	14.0	14.0		
CH ₃ CO	20.4	20.2	20.4	20.5		
CH ₃ CO	169.7	169.8	170.1	170.1		
J	169.1	169.4	169.5	169.5		

¹³C NMR spectra (50.3 MHz) of the 4.6-O-(n-alkylidene)-D-glucopyranosyl fluorides **22a/22b**, **23a/23b** in CDCl₃ with TMS as the external standard^a

^a δ values in ppm; J values in Hz.

^bAcetal carbon.

^cAll other CH₂ groups.

lower yields because of cleavage of the acetal group (Table 3), and after 30-min reaction under these conditions the acetal group is completely cleaved.

The anomeric structures of **22** and **23** were determined from C,Hcorrelated NMR spectra. The α -anomers **22b** and **23b** show H-1 as a double doublet at 5.70 ppm with small coupling constants of 2.8–2.9 Hz, while C-1 gives a doublet at 104.1 ppm with ${}^{1}J_{C-1,F}=230$ Hz. The β -anomers **22a** and **23a** have H-1 at 5.37–5.38 ppm and C-1 at 106.3–106.4 ppm. They have larger $J_{\text{H-1,H-2}}$ values (5.7–6.0 Hz) and smaller ${}^{1}J_{\text{C-1,F}}$ values (216.6–218.5 Hz) than those of the α -anomers [12–14]. Further NMR data for **22** and **23** are shown in Tables 4 and 5. In our communication [2] there are mistakes in the NMR data given for H-1 and C-1 in the compounds **22b** and **23b**. The correct data are shown in Tables 4 and 5. The data for H-1 of 4,6-Obenzylidene-2,3-di-O-acetyl- α -D-glucopyranosyl fluoride [2] are δ 5.65 ppm ($J_{1,F}=53.1$ Hz, $J_{1,2}=3.0$ Hz).

Acknowledgement

R.M. and D.P. wish to thank the Deutsche Forschungsgemeinschaft for financial assistance.

References

- 1 Part 5: R. Miethchen, T. Gabriel, D. Peters, J. Holz and M. Michalik, *Carbohydr. Res.* 214 (1991) 331.
- 2 R. Miethchen, G. Kolp, D. Peters and J. Holz, Z. Chem., 30 (1990) 56.
- 3 R. Miethchen, J. Holz and D. Peters, Z. Chem., 29 (1989) 420.
- 4 D. Peters, J. Holz and R. Miethchen, J. Fluorine Chem., 50 (1990) 217.
- 5 M. Hayashi, S. Hashimoto and R. Noyori, Chem. Lett., (1984) 1747.
- 6 W. A. Szarek, G. Grynkiewicz, B. Doboszewski and G. W. Hay, Chem. Lett., (1984) 1751
- 7 H. Paulsen, Pure Appl. Chem., 41 (1975) 69.
- 8 R. Miethchen, Z. Chem., 29 (1989) 425.
- 9 K. Bock and C. Pedersen, Acta Chem. Scand., 27 (1973) 2701.
- 10 K. Bock and C. Pedersen, Acta Chem. Scand., 26 (1972) 2360.
- 11 J. Defaye, A. Gadelle and C. Pedersen, Carbohydr. Res., 174 (1988) 323.
- 12 K. Bock and C. Pedersen, Acta Chem. Scand., B29 (1975) 682.
- 13 K. Bock and C. Pedersen, Adv. Carbohydr. Chem. Biochem., 41 (1983) 27.
- 14 R. Csuk and B. I. Glaenzer, Adv. Carbohydr. Chem. Biochem., 46 (1988) 73.